| | | | | | | | | F | REVIS | IONS | | | | | | | | | | | |---|--|---|--------------------------------------|---------------------------------------|--|------------------------------------|-------------|-------------------|--------------------|-------------|---------------------|------------|-----------------|------------------------|-----------------|----------------------|-------------|--------------|------------|---| | LTR | | | | | D | ESCR | RIPTIO | N | | | | | DATE (YR-MO-DA) | | | DA) | APPROVED | | D | | | Α | Add v
delay
shall | vendor
times
be gau | s, FS
at V _C
urante | CM 18
C = 2.
ed if n | CM 18714, 27014, and 04713. Table I, P $_{\rm C}$ = 2.0 V and V $_{\rm CC}$ = 6.0 V and subgrouped if not tested. | | | e I, Pro
roups | pagation
10 and | on
I 11 | 1985 NOV 25 | | | Michael A. Frye | | | | | | | | В | Delet
2 cas
chan | e vend | lor CA
nes. I
table | AGE 3
Inactiv
I. Cha | GE 31019. Add vendor CAGE 27014 and the S and activate case R and 2 for new design. Editorial Change drawing CAGE code to 67268. Editorial | | | | | 1989 MAY 22 | | | | Michael A. Frye | ENT | CA | .GE | C | ODI | Ξ 6 | 5 72 | 68 | Γ | Γ | | | Γ | | Γ | Γ | | Τ | | T | | REV | ENT | CA | .GE | C | ODI | E 6 | 572 | 68 | | | | | | | | | | | | | | REV | ENT | CA | .GE | C | ODI | € 6 | 572 | 68 | | | | | | | | | | | | | | REV
SHEET
REV | ENT | CA | GE | C | ODI | € 6 | 572 | 68 | | | | | | | | | | | | | | REV
SHEET
REV
SHEET | | CA | GE | C | | € 6 | 5 72 | 68 | В | В | В | В | В | В | В | В | В | В | | | | REV
SHEET
REV
SHEET | US | CA | .GE | RE | | € 6 | | | B 3 | B 4 | B 5 | B 6 | B 7 | B 8 | B 9 | B 10 | B 11 | B 12 | | | | CURRE REV SHEET REV SHEET REV STATU OF SHEETS | US | CA | GE | RE\ SHI | V |) BY | B 1 | В | | | 5 | 6 | 7
SE EL | 8
ECTR | 9
ONIC | 10
S SUP | 11
PLY (| | i.R | | | REV SHEET REV STATU OF SHEET PMIC N/A STA | US
S
ANDAF
LITAR | RD
Y | .GE | RE\ SHI | V
EET |) BY
Kellehe | B 1 | В | | | 5 | 6 | 7
SE EL | 8
ECTR | 9
ONIC | 10 | 11
PLY (| 12 | :R | | | REV SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MIL DR THIS DRAW FOR | US
S
ANDAF
LITAR
AWIN
/ING IS AV | RD
Y
G | | REV
SHI
PRE
Ma
CHE
Ray | V
EET
PARED |) BY
Kellehe
BY
n | B 1 | В | | 4
MIC | 5 DE | 6
EFENS | 7 SE EL DA | 8
ECTR
YTON | 9
ONICA, OHI | 10
S SUP
O 454 | 11
PLY (| 12 | , | 7 | | REV SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MIL DR THIS DRAW FOR | US S S ANDAF LITAR AWING IS AN ARTMENTENCIES OF THE PROPERTY O | RD
Y
G
VAILAB
ALL
TS
DF THE | BLE | RE\ SHE PRE Ma CHE Ray APP | V EET PAREDIrcia B. I CKED I / Monnii ROVEE ael Frye |) BY
Kellehe
BY
n
) BY | B
1 | B
2 | | 4
MIC | DE
ROCI
ERTIN | RCUING OC | 7 SE EL DA | 8 ECTR YTON GITAL BUFF | 9
ONICA, OHI | 10
S SUP
O 454 | PPLY C | 12
CENTE | ,
LICOI | 7 | ## 1. SCOPE - 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". - 1.2 Part number. The complete part number shall be as shown in the following example: 1.2.1 <u>Device type</u>. The device type shall identify the circuit function as follows: | Device type | Generic number | Circuit function | |-------------|----------------|--------------------------------| | 01 | 54HC240 | Inverting octal buffer 3-state | 1.2.2 <u>Case outlines</u>. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows: Outline letter Case outline - D-8 (20-lead, 1.060" x .310" x .200"), dual-in-line package - S 2 F-9 (20-lead, .540" x .300" x .100"), flat package C-2 (20-terminal, .358" x .358" x .100"), square chip carrier package - 1.3 Absolute maximum ratings. | Supply voltage range (V _{CC}) | -0.5 V dc to +7.0 V dc | |--|--| | DC Input voltage range | -0.5 V dc to V _{CC} +0.5 V dc | | DC output voltage range | -0.5 V dc to +0.5 V dc | | Clamp diode current | | | DC output current (per pin) | ± 35 mA | | DC V _{CC} or GND current (per pin | ± 70 mA | | Storage temperature range | -65°C to + 150°C | | Maximun power dissipation (P _D) | 500 mW <u>2/</u> | | Lead temperature (soldering, 10 seconds) | | | Thermal resistance, junction-to-case (θ_{JC}) | See MIL-M-38510, appendix C | | Junction temperature (T _J) | +175° C | | | | 1.4 Recommended operating conditions. | Supply voltage range (V_{CC}) | +2.0 V dc to +6.0 V dc
-55° C to +125° C | |-----------------------------------|---| | V _{CC} = 2.0 V | 0 to 1.000 ns | | V _{CC} = 4.5 V | 0 to 500 ns | | V _{CC} = 6.0 V | 0 to 400 ns | $[\]overline{1/}$ Unless otherwise specified, all voltage are referenced to ground. $\overline{2/}$ For T_C= +100° C to +125° C, derate linearly at 12 mW/° C. | STANDARD
MILITARY DRAWING | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET 2 | ### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification and standard</u>. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein. **SPECIFICATION** **MILITARY** MIL-M-38510 - Microcircuits, General Specification for. **STANDARD** **MILITARY** MIL-STD-883 - Test Methods and Procedures for Microelectronics. (Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. ### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-M-38510, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. - 3.2.1 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2. - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3. - 3.2.5 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.2 herein. - 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range. - 3.4 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein. - 3.5 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein. - 3.6 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing. - 3.7 <u>Notification of change</u>. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein). - 3.8 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. | STANDARD
MILITARY DRAWING | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET 3 | | | | ABLE I. <u>Electrical perfo</u> | | ensucs. | | | | |---------------------------|-----------------|---|---|-------------------|----------------|-------|------| | Test | Symbo | Condit | tions
_C <u><</u> +125° C | Group A subgroups | Limits Min Max | | Unit | | | | (unless otherwis | - | oubgroups | 1 | IVIGA | | | | 1,, | | | 1.00 | 1.0 | | | | High level output voltage | V _{OH} | V _{IN} = V _{IH} minimum or V _{IL} maximum, | V _{CC} = 2.0 V | 1, 2, 3 | 1.9 | | V | | | | l _O ⊆ 20 μΑ | V _{CC} = 4.5 V | | 4.4 | | | | | | | V _{CC} = 6.0 V | | 5.9 | | | | | | $V_{IN} = V_{IH}$ minimum or V_{IL} maximum, $ I_O \le 6.0$ mA | V _{CC} = 4.5 V | | 3.7 | | | | | | $V_{IN} = V_{IH}$ minimum or V_{IL} maximum, $ I_O \le 7.8$ mA | V _{CC} = 6.0 V | | 5.2 | | - | | Low level output voltage | V _{OL} | V _{IN} = V _{IH} minimum or V _{IL} maximum, | V _{CC} = 2.0 V | 1, 2, 3 | | 0.1 | V | | | | l _O ¹ 20 μΑ | V _{CC} = 4.5 V | | | 0.1 | | | | | | V _{CC} = 6.0 V | | | 0.1 | | | | | $V_{IN} = V_{IH}$ minimum or V_{IL} maximum, $ I_O \le 6.0$ mA | V _{CC} = 4.5 V | _ | | 0.4 | | | | | $V_{IN} = V_{IH}$ minimum or V_{IL} maximum, $ I_O \le 7.8$ mA | V _{CC} = 6.0 V | | | 0.4 | | | High level input voltage | V _{IH} | 2/ | V _{CC} = 2.0 V | 1, 2, 3 | 1.5 | | V | | | | | V _{CC} = 4.5 V | | 3.15 | | | | | | | V _{CC} = 6.0 V | _ | 4.2 | | | See footnote at end of table. | STANDARD
MILITARY DRAWING | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET 4 | | Test | Symbo | | onditions | Group A | | imits | Unit | |---|--|---|------------------------------|-----------|-----|-------|------| | | | -55° C | ≤ T _C ≤ +125° C | subgroups | Min | Max | | | | 1 | (unless other | erwise specified) | | | | | | Low level input voltage | V _{IL} | 2/ | V _{CC} = 2.0 V | 1, 2, 3 | | 0.3 | V | | | | | V _{CC} = 4.5 V | | | 0.9 | | | | | | V _{CC} = 6.0 V | | | 1.2 | | | Input capacitance | C _{IN} | V _{IN} = 0 V, T _C = 4
see 4.3.1c | | 4 | | 10 | pF | | Output capacitance | C _{out} | | | 4 | | 20 | | | Quiescent current | Icc | V _{CC} = 6.0 V, V _{IN} | = V _{CC} or GND | 1, 2, 3 | | 160 | μΑ | | Input leakage current | I _{IN} | $V_{CC} = 6.0 \text{ V}, V_{IN} = V_{CC} \text{ or GND}$ | | 1, 2, 3 | | ±1 | μΑ | | Output leakage current | l _{OZ} | $V_{CC} = 6.0 \text{ V}, V_{out} = V_{CC} \text{ or GND}$ | | 1, 2, 3 | | ±10 | μΑ | | Functional tests | | See 4.3.1.d | | 7 | | | | | | | 0 50 5 |
 V _{CC} = 2.0 V | 9 | | 125 | ns | | Propagation delay time,
An to Yan or Bn to YBn | t _{PHL} | C _L = 50 pF
See figure 4 | | 10, 11 | | 185 | | | | | | V _{CC} = 4.5 V | 9 | | 25 | | | | | <u>3/</u> | | 10, 11 | | 37 | _ | | | | |
 V _{CC} = 6.0 V | 9 | | 21 | _ | | | | | | 10, 11 | | 45 | | | _ | | |
 V _{CC} = 2.0 V | 9 | | 175 | _ | | Propagation delay time, output ENABLE A, B to | t _{PZH} ,
t _{PZL} | C _L = 50 pF
See figure 4 | | 10, 11 | | 265 | ns | | Yan or Ybn (enable) | | | V _{CC} = 4.5 V | 9 | | 35 | | | | | <u>3/</u> | <u> </u> | 10, 11 | | 53 | | | | | | V _{CC} = 6.0 V | 9 | | 30 | _ | | | ļ | | | 10, 11 | | 45 | | See footnotes at end of table. | STANDARD
MILITARY DRAWING | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET 5 | | | | TABLE I. Electrical | performance ch | aracteristics. | | | | |--|--|--|----------------------------------|----------------|--------|-----|------| | Test | Symbo | Condi | | Group A | Limits | | Unit | | | | -55° C <u><</u> T | _C <u><</u> +125° C | subgroups | Min | Max | | | | | (unless otherwi | se specified) | | | | | | | | 0 50 5 | V _{CC} = 2.0 V | 9 | | 175 | • | | Propagation delay time,
output ENABLE A, B to | t _{PHZ} | C _L = 50 pF
See figure 4 | | 10, 11 | · | 265 | ns | | YAn or YBn (disable) | | | V _{CC} = 4.5 V | 9 | | 35 | | | | | <u>3/</u> | | 10, 11 | | 53 | | | | | | V _{CC} = 6.0 V | 9 | | 30 | | | | | | | 10, 11 | | 45 | | | | | | V _{CC} = 2.0 V | 9 | | 60 | | | Transition time, rise and fall from | t _{THL} ,
t _{TLH} | C _L = 50 pF
See figure 4 | | 10, 11 | | 90 | ns | | any output | | | V _{CC} = 4.5 V | 9 | · | 12 | | | | | <u>3/</u> | | 10, 11 | | 18 | | | | | | V _{CC} = 6.0 V | 9 | | 10 | _ | | | | | | 10, 11 | | 15 | | ^{1/2} For a power supply of 5 V $\pm 10\%$, the worse case output voltages (VOH and VOL) occur for HC at 4.5 V. Thus, the 4.5 V values should be used when designing with this supply. Worst case VIH and VIL occur at VCC = 5.5 V respectively. (The VIH value at 5.5 V is 3.85 V.) The worse case leakage current (IIN, ICC, and IOZ) occur for CMOS at the higher voltage and so the 6.0 V values should be used. Power dissipation capacitance (CPD), PD = CPD (VCC x VCC) f + (ICC x VCC), and the no load dynamic current consumption, Is = CPD (VCC) f + ICC. - $\underline{2}$ / V_{IH} and V_{IL} test are not required and shall be applied as forcing functions for the V_{OH} or V_{OL} test. - $\underline{3}$ / AC testing at V_{CC} = 2.0 V and V_{CC} = 6.0 V shall be guaranteed, if not tested, to the specified limits. - $\underline{4}/$ Transition time (t_{TLH}, t_{THL}), if not tested, shall be guaranteed to the specified limits. | STANDARD
MILITARY DRAWING | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET 6 | # CASE R AND S FIGURE 1. Terminal connections (top view). | STANDARD
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | | | REVISION LEVEL
B | SHEET 7 | | ENABLE A | An | YAn | ENABLE B | Bn | YBn | |----------|----|-----|----------|----|-----| | L | L | Н | L | L | Н | | L | Н | L | L | Н | L | | Н | L | Z | Н | L | Z | | Н | Н | Z | Н | Н | Z | FIGURE 2. Truth table. FIGURE 3. Logic diagram. | STANDARD
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | | | REVISION LEVEL
B | SHEET 8 | FIGURE 4. Switching waveforms. | STANDARD
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | | | REVISION LEVEL
B | SHEET
9 | ### 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein). - 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply: - a. Burn-in test (method 1015 of MIL-STD-883). - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein). - (2) $T_A = +125^{\circ} C$, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer. - 4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply. - 4.3.1 Group A inspection. - Tests shall be as specified in table II herein. - Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted. - c. Subgroup 4 (C_{IN} and C_{out} measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance. Test all applicable pins on 5 devices with zero failures. - d. Subgrup 7 test shall verify the truth table as specified on figure 2. - 4.3.2 Groups C and D inspections. - a. End-point electrical parameters shall be as specified in table II herein. - b. Steady-state life test (method 1005 of MIL-STD-883) conditions: - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein). - (2) $T_{\Delta} = +125^{\circ} \text{C}$, minimum. - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883. | STANDARD
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | SIZE
A | | 5962-84074 | |---|------------------|---------------------|------------| | | | REVISION LEVEL
B | SHEET 10 | TABLE II. Electrical test requirements. | Subgroups MIL-STD-883 test requirements | (per method
5005, table I) | |--|-------------------------------| | Interim electrical parameters (method 5004) | | | Final electrical test parameters (method 5004) | 1*,2,3,9 | | Group A test requirements (method 5005) | 1,2,3,7,9,
10,11** | | Groups C and D end-point electrical parameters (method 5005) | 1,2,3 | ^{*} PDA applies to subgroup 1. - 5. PACKAGING - 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510. - 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications. - 6.2 Replaceability. Replaceability is determined as follows: - Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/65703---. - $6.3 \, \underline{\text{Comments}}$. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375. | STANDARD | |-----------------------------------| | MILITARY DRAWING | | DEFENSE ELECTRONICS SUPPLY CENTER | | DAYTON, OHIO 45444 | | SIZE
A | | 5962-84074 | |------------------|---------------------|-------------| | | REVISION LEVEL
B | SHEET
11 | ^{**}Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I. 6.4 <u>Approved source of supply</u>. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5) has been submitted to DESC-ECS. | Military drawing part number | Vendor
CAGE
number | Vendor
similar part
number <u>1</u> / | Replacement
military specification
partnumber | |------------------------------|------------------------------------|---|---| | 8407401RX
<u>2</u> / | 01295
04713
18714
27014 | SNJ54HC240J
54HC240/BRAJC
CD54HC240F/3A
MM54HC240J/883 | M38510/65703BRX | | 8407401SX | 01295
27014 | SNJ54HC240W
MM54HC240W/883 | M38510/6570BSX | | 84074012X
<u>2</u> / | 01295
04713
27014 | SNJ54HC240FK
54HC240M/B2AJC
MM54HC240E/883 | M38510/65703B2X
removed 6/5/92 | 1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. 2/ Inactive for new design. Use MIL-M-38510 QPL'd device. | Vendor CAGE
number | Vendor name and address | |-----------------------|---| | 01295 | Texas Instruments, Incorporated P.O. Box 6448 Midland, TX 79701 | | 04713 | Motorola, Incorporated
7402 S. Price Road
Tempe, AZ 85283 | | 18714 | RCA Corporation
Semiconductor sector
Route 202
Somerville, NJ 08876-0591 | | 27014 | National Semiconductor
333 Western Avenue
South Portland, ME 04106 | | STANDARD MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-84074 | |--|------------------|---------------------|------------| | | | REVISION LEVEL
B | SHEET 12 |